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Abstract

Cotton is not only the world’s most important natural fiber crop, but it is
also an ideal system in which to study genome evolution, polyploidization,
and cell elongation. With the assembly of five different cotton genomes,
a cotton-specific whole-genome duplication with an allopolyploidization
process that combined the A- and D-genomes became evident. All existing
A-genomes seemed to originate from the A0-genome as a common ances-
tor, and several transposable element bursts contributed to A-genome size
expansion and speciation. The ethylene production pathway is shown to
regulate fiber elongation. A tip-biased diffuse growth mode and several
regulatory mechanisms, including plant hormones, transcription factors,
and epigenetic modifications, are involved in fiber development. Finally, we
describe the involvement of the gossypol biosynthetic pathway in the ma-
nipulation of herbivorous insects, the role ofGoPGF in gland formation, and
host-induced gene silencing for pest and disease control. These new genes,
modules, and pathways will accelerate the genetic improvement of cotton.
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Gossypium: a cotton
genus of the family
Malvaceae

Polyploidization:
the evolutionary
process that combines
two or more sets of
chromosomes in one
nucleus

Domestication:
the process of
selecting various traits
from crops to fit
human requirements

Secondary cell wall
(SCW): refers to the
thickened layers
formed internally and
subsequently to the
deposition of primary
cell wall
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1. INTRODUCTION

Cotton belongs to the genus Gossypium in the family Malvaceae and produces the single most
important textile fiber, accounting for ∼35% of the world’s total annual fiber demands. It is also
used as amodel system to study plant polyploidization, cell elongation, and cell wall biogenesis (36,
137).TheGossypium genus comprises 45 diploid species (2n= 2x= 26) and seven tetraploid species
(2n= 4x= 52) with extraordinarymorphological variations, including different plant architectures
ranging from wild perennial small trees and shrubs to cultivated herbaceous annuals, with variable
leaf shapes and different fiber characteristics (Figure 1).

Cotton has long attracted attention from agricultural scientists, taxonomists, and evolutionary
biologists, as it exhibits extraordinary genomic diversity with global radiation, which has led to
the evolution of eight diploid cotton groups (A-, B-, C-, D-, E-, F-, G-, and K-genomes) plus
an AD-genome clade. The Gossypium genus can be divided into three major lineages primarily
based on morphological and geographical evidence: the NewWorld clade (D- and AD-genomes),
the African-Asian clade (A-, B-, E-, and F-genomes), and the Australian clade (C-, G-, and K-
genomes) (Figure 1k). Most wild cotton species have very short fibers that adhere tightly to the
seed; only four cotton species, A1, A2, (AD)1, and (AD)2, have been domesticated to produce textile
fiber (Figure 1l). Upland cotton, Gossypium hirsutum [(AD)1], presently dominates the world’s
cotton commerce by producing∼95% of the natural lint fiber used by the textile industry (34, 49).
There are four overlapping stages during fiber development: initiation, elongation, secondary cell
wall (SCW) biosynthesis, and maturation, which are defined on the basis of the number of days
postanthesis (DPA). Cotton fibers can be further classified into two types: adherent fuzz fibers,
which initiate at 5 to 10 DPA and grow to a final length of less than ∼5 mm, and spinnable lint
fibers, which initiate before flowering and grow to a final length of ∼3 cm.
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Figure 1

An overview of cotton phenotypes, geographical distributions, and seed trichome variation within the Gossypium genus. (a–d) Cotton
plant architecture, showing (a) Gossypium raimondii, (b) Gossypium herbaceum, (c) Gossypium arboreum, and (d) Gossypium hirsutum.
(e) Cotton leaf shape. ( f ) Cotton fiber. (g–j) Cotton flower and boll in G. hirsutum, including (g) white blooming flower, (h) reddened
flower at 1 day postanthesis (DPA), (i) developing boll at 15 DPA, and ( j) opened boll with mature fibers. (k) Geographical distributions
of A- through G-, K-, and AD-genomes. Gray, blue, and red indicate the AD- and D-genome clade; the A-, B-, E-, and F-genome
clade; and the C-, G-, and K-genome clade, respectively. (l) Phenotypes of cottonseed trichomes among cotton species.

Since the publication of the first draft of the cotton (Gossypium raimondii) genome in 2012 (111),
24 genome assemblies from 10 different cotton species have been reported (5, 11, 14, 34, 35, 49,
50, 58, 70, 101, 114, 136, 140, 147). In this review, we present and discuss recent advances in cot-
ton genome and cotton biology. We also describe functional genomics research into cotton fiber
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Whole-genome
duplication: a form of
polyploidization
process that in an
organism doubles the
chromosomes and
results in large
numbers of retained
duplicates

At- or Dt-
subgenome:
corresponding
chromosome sets for
the allotetraploid
(AD)-genome
resembling diploid A-
or D-genomes,
respectively

development, secondary metabolism, and biotic and abiotic stress responses. Finally, we address
current challenges and suggest future directions for cotton research.

2. COTTON GENOMES

2.1. Cotton Genome Sequencing and Assembly

There are 45 diploid cotton species throughout the world. G. raimondii, also known as the D5-
genome that originated in Mexico, possesses one of the smallest nuclear genomes and is regarded
as a potential donor to all polyploid cottons. The African native Gossypium herbaceum and the
Asiatic native Gossypium arboreum were collectively called the A-genome and named specifically
as the A1- and A2-genomes, respectively. Both G. herbaceum and G. arboreum have similar ge-
nomic characteristics and diverged in a short evolutionary time, ∼0.7 million years ago. These
diploid cottons have a relatively long history of cultivation, with ∼1.5-cm fiber cells that are
barely fit for human clothing. It is widely accepted in the cotton community that G. herbaceum-
or G. arboreum-like and G. raimondii-like cotton were reunited by transoceanic dispersal that ulti-
mately led to the rise of at least seven allotetraploid AD-genome species (2n = 4x = 52) [(AD)1-
to (AD)7-genomes] (35). Two of them, G. hirsutum [(AD)1-genome] and Gossypium barbadense
[(AD)2-genome], were domesticated for human use ∼8,000 years ago and became the major cot-
ton cultivars, since they produce ∼3.0-cm-long fiber cells suitable for the modern textile industry
(121).

The G. raimondii genome was the first to be sequenced and assembled, perhaps because it not
only served as the D-genome donor, but it also is one of the smallest diploid cotton genomes
(∼800 Mb). To date, three G. raimondii assemblies from accessions D5-3 (111), Ulbrich (70),
and D5-4 (101) have been released. Substantial chromosome rearrangements and a hexaploidiza-
tion event ∼115–146 million years ago (Mya) that is common to eudicots (123), as well as
cotton-specific whole-genome duplications at 13–20Mya, were indicated to have occurred during
G. raimondii evolution (70, 111). D5-4, the most up-to-date G. raimondii genome, successfully im-
proved the genome quality and completeness by filling up gaps, resulting in a final genome size
of ∼761 Mb (101). It is well suited for various comparative, genetic, and genomic analyses.

Cultivar Shixiya1 of G. arboreum (A2-genome), which represents one of the phylogenetically
closest relatives to the At-subgenome of tetraploid cottons, was first sequenced and assembled
in 2014 (50) and further updated in 2018 (14). A third and final assembly of the A2-genome has
recently been published (35). In this latest version, ambiguous sequences and misassembled, un-
known repeat sequences were substantially reduced, resulting in a more accurate genome size
(1,637 Mb) and transposable element (TE) content (80.1%). The current assembly represents a
chromosome-scale reference forG.arboreumwith high completeness and accuracy (35).A compre-
hensive and high-resolution gene map of G. arboreum, which revealed thousands of tissue-specific
expressed genes, alternative uses of transcription start sequences, and polyadenylation sites and
alternative splicing hotspots in cotton, was published and deposited in public databases (105, 110).
An A1-genome, G. herbaceum var. africanum (A1-0076), was reported in the same article (35), as
part of a large-scale comparative genomic study. The resulting assembly captured 1,556 Mb of
genome sequence and a genome localization rate of 95.7% (35).

To date, there have been seven successful assemblies for the most widely cultivated cotton
species, G. hirsutum line TM-1 [(AD)1-genome], and one for the cultivar ZM24 genome (11,
34, 35, 49, 114, 136, 147). Comparative genomic studies revealed that there are three large-scale
(>4 Mb) inversions located at chromosome 8 of the At-subgenome between TM-1 and ZM24,
which led to isolated haplotypes for the two populations and suppressed meiotic recombination
in this region (136). The final genome size reported in the latest assembly is 2,290 Mb without
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gap-filling sequences, 99.2% of which were anchored and oriented on 26 chromosomes (35),
which may supplant prior assemblies as a chromosome-grade reference genome for G. hirsutum.

The genomes of three accessions, including Xinhai21 (58), 3-79 (11, 114, 140), and Hai7124
(34), all from the much-less-cultivated tetraploid cottonG. barbadense [(AD)2-genome], have been
published, suggesting that scientists have great interest in this species, probably because of its
longer and stronger fiber. The current G. barbadense reference genome (114) is 2,267 Mb in size,
and its anchoring rate reaches 97.7%. Although G. barbadense and G. hirsutum diverged over a
relatively short period of time (∼0.4–0.6 Mya), these two genomes underwent distinguishable ge-
nomic divergence, with an average of 5.89 single-nucleotide polymorphisms (SNPs) per kilobase
and one 170.2-Mb inversion. Meanwhile, in-depth comparative transcriptome analysis showed
that the transcriptional activation of genes associated mainly with membrane transport, glycan
biosynthesis, and carbon metabolism was associated with the longer-fiber phenotype in Hai7124
(34). Continuing efforts to update diploid and allotetraploid genomes will provide valuable re-
sources for the cotton community to accelerate breeding programs aimed specifically at better
fibers.

2.2. Comparative Analysis of Cotton Genomes

Cotton is an excellent system in which to study genome size evolution, as huge variations were
found among Gossypium species, even within diploid genomes (109). All diploid cotton species
have 13 chromosomes with genome sizes ranging from∼738Mb in theD5-genome to∼2,858Mb
in the Australian K-genome. Thus,Gossypium has undergone a greater-than-threefold increase in
genome sizes in the approximately 13 to 15 million years since it began to diverge from a common
ancestor, mainly due to the accumulation of long terminal repeat (LTR) retrotransposon activities
(50). Among sequenced Malvales genomes (2, 21, 35, 95, 102, 142),Gossypium is phylogenetically
closest to the Gossypioides/Kokia lineage, and the smallest cotton D-genomes have similar genome
sizes to Bombax ceiba (895 Mb) and Durio zibethinus (715 Mb) (Figure 2). An analysis of 22
American D-genome accessions suggested that diploid D-genome cotton (subgenusHouzingenia)
originated ∼6.6 Mya, with subsequent diversification events during the mid-Pleistocene at
∼0.5−2.0 Mya. The D-genome species range from ∼750 Mb to ∼900 Mb, a narrow range that
may have resulted from a process called genome downsizing bias, which counteracts genome
size growth by TEs (23). Compared with the two diploid A-genomes (A1-genome, 1,556 Mb;
A2-genome, 1,637 Mb), the At-subgenome of G. hirsutum (1,449 Mb) is significantly reduced,
whereas its Dt-subgenome is expanded from 738Mb in the putative D-genome donorG. raimondii
to the current subgenome of 822 Mb (49). This genomic downsizing in the At-subgenome and
amplification in the Dt-subgenome are closely related to substantially more active TE insertions
in the Dt-subgenome than in the At-subgenome. Both A1- and A2-genomes experienced a further
twofold expansion in genome size relative to that of the D5-genome, and, as a result, they consist
of ∼80% TEs, especially Gypsy-type LTRs (35, 50). A Gaussian probability density function
analysis (35), which overcame the major pitfall of most previous similar studies that relied on the
presence of both ends of full-length LTRs (34, 50), was used to estimate the insertion time of
full and fragmented Gypsy-type LTRs in cotton genomes. The earliest LTR peak was found at
∼5.7 Mya, which corresponds to the expected speciation time for the A- and D-genomes. The
second peak, at ∼2.0 Mya, in both Dt- and At-subgenomes, suggests that allotetraploid cotton
may have formed at this time.The third peak, at∼0.89Mya, occurred only in the two A-genomes,
whereas the fourth peak, at ∼0.61 Mya, and fifth peak are unique to the A1- and A2-genomes,
respectively (35). These TE bursts ultimately shaped the distinct genomic architecture of cotton
and contributed significantly to its genome size expansion, speciation, and evolution.
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Structural variants
(SVs): sequence
alterations covering
≥50 base pairs that
result in duplications,
insertions, deletions,
inversions, and
translocations
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Figure 2

Inferred phylogenetic relationships of major species belonging to the Malvaceae family. Red lines indicate predicted possible
relationships with no sequenced genomic information available for that genus. The shading represents the cotton tribe. The number
with the 95% highest posterior density intervals in each clade represents the estimated divergence time in million years ago (indicated
in parentheses).

Although the A1- and A2-genomes diverged over a relatively brief period of time, the two A-
genomes accumulated substantial genomic and genetic differences. For example, the A2-genome
underwent a reciprocal translocation between chromosomes 1 and 2, and the A1-genome expe-
rienced two large-scale (>40 Mb) inversions in chromosomes 10 and 12 after their speciation
(22, 35). The genetic divergence between the two A-genomes reached nearly 1.0, suggesting that
the A1- and A2-genomes can be clearly distinguished as two cotton species. By comparing two
A-genomes with the At-subgenome ofG. hirsutum, a large number of structural variants (SVs), in-
cluding 61,053 in the A1-genome and 61,383 in the A2-genome, were characterized, with 35,997
(41.64%) of these SVs being shared in both A-genomes (35). These huge genetic differences and
chromosomal SVs provide compelling evidence to suggest that the two A-genomes originated
independently with no ancestor–progeny relationship between them, which may explain why in-
terspecific hybridization between the two A-genomes is often unsuccessful.

3. CURRENT UNDERSTANDING OF COTTON EVOLUTION

3.1. Origin of Gossypium and Evolution of Allotetraploid Cotton

Despite its different geographical origins and morphological and cytogenetic diversities, Gossyp-
ium constitutes a single monophyletic group that originated from a common ancestor ∼5–10Mya
(121). Thus far, there are two views with regard to cotton evolution: One suggests that the B-
genome is the primitive group that produced all other cotton species (12, 125); the second suggests
that the D-genome is the common ancestor of all cotton taxa (13). The incongruence of phyloge-
netic relationships in this genus has highlighted the necessity of using multiple and independent
studies, especially genome analyses, to fully elucidate the origin of any given group of higher plants.
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A0-genome:
the putative common
ancestor of all
A-genomes, including
the extant diploid
A-genomes and
At-subgenome of
allotetraploid cottons
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Figure 3

The evolution and domestication of cottons. (a) The origin and evolution of five allotetraploid cottons and two diploid A-genomes.
(b) Cottonseed with associated fiber from the wild forms (left) and domesticated cultivars (right). The black arrows indicate the species
of origin for each image.The Peruvian Gossypium barbadense,Gossypium hirsutum variety yucatanense, and Gossypium herbaceum subspecies
africanum represent the wild cottons. Abbreviation: Mya, million years ago.

To date, seven allopolyploid cotton species, including (AD)1, (AD)2, Gossypium tomentosum
[(AD)3],Gossypiummustelinum [(AD)4],Gossypium darwinii [(AD)5],Gossypium ekmanianum [(AD)6]
and Gossypium stephensii [(AD)7], have been reported (18). Phylogenetic studies indicated that,
among the first five species, (AD)4 may serve as the basal clade, with (AD)1 and (AD)3 forming
the second clade, whereas (AD)2 and (AD)5 form the third clade (Figure 3a). This means the Dt-
subgenome and At-subgenome in all of the five species originated from common diploid D- and
A-genome species at 1.0 to 1.6 Mya and then gradually branched into five species within 0.20 to
0.63 Mya (11). The two subgenomes in each of the five polyploid species are highly conserved at
the chromosomal, gene content, and nucleotide levels,withmore substantial diversifications found
in evolutionary rate, heterogeneities, and the expression patterns of gene families and homologs.

All tetraploid cottons are known to be directly descended from an allopolyploidization event
involving hybridization between the A- and D-genome ancestors, followed by genome doubling
(11, 49). Abundant studies support a Gossypium species resembling G. raimondii (D5-genome) as
the D-genome donor (34, 49, 114, 147). However, controversy persists as to which is the actual A-
genome donor in tetraploid cottons. An early phylogenetic analysis suggested that a hybridization
between Asiatic cotton (A2-genome) and the American diploid cotton (D5-genome) produced the
ancestor for all tetraploid cottons (88). Based on a second study, African cotton (A1-genome) was
suggested to be an appropriate partner in the tetraploid cotton, as its genome is more primitive
than the A2-genome (22). Chromosomal-scale analysis of A1-, A2-, and (AD)1-genomes revealed
that neither the A1- nor A2-genome is the actual A-genome donor (35). Instead, a common and
possibly extinct A0-genome, which may serve as an ancestor to the A1- and A2-genome clade, is
the closest relative to the At-subgenome rather than either the A1- or A2-genome (35). SNP anal-
ysis based on cotton populations showed that the At-subgenome was much closer to the outgroup
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Ks: the number of
synonymous
substitutions per
synonymous site

D5-genome (with 30.54% ancestral alleles) than the A1- (20.52%) or A2-genome (20.04%). Es-
timation of divergence time indicated that allotetraploid cottons were formed at ∼1.0–1.6 Mya,
which preceded the speciation of A1- and A2-genomes at ∼0.7 Mya. Apparently, hybridization of
this A0-genome with a D5 species produced the current allotetraploid cotton, whereas it subse-
quently diverged into the present-day A1- and A2-genomes (35) (Figure 3a). This genome-based
analysis will likely shut down the A1- versus A2-genome argument, especially if archaeological data
are someday uncovered that confirm the existence of the currently extinct A0-genome.

3.2. Evolution Following Polyploidization

Asymmetric genome evolution seems to have occurred in both G. hirsutum and G. barbadense,
as there is an overall acceleration in evolutionary rate in the Dt-subgenome relative to that of
the At-subgenome (49). The average Ks values for collinearity-supported gene pairs were 0.463
for the Dt-subgenome versus Theobroma cacao (a close relative to cotton) and only 0.422 for the
At-subgenome in the same assay. Analysis of intergenic collinear regions also showed that the
single-nucleotide variation rate for the Dt-subgenome versus the D-genome was greater than
that for the At-subgenome versus the A-genome (49). Large variants in the genome, including two
reciprocal translocations between chromosomes 2 and 3 and chromosomes 4 and 5, chromosomal
rearrangements, and large pericentric inversions were specifically found in the At-subgenome,
suggesting that the A-genome in diploid cotton was reorganized sometime after the A0-genome
was incorporated into the allotetraploid cotton genome (35, 114).

Polyploidization in cotton induced a wide spectrum of gene expression changes and novel
interactions. A transcriptomic analysis of 35 vegetative and reproductive tissues has demonstrated
that 20 to 40% of homoeologous gene pairs showed At- or Dt-subgenome-biased expression in
G. hirsutum (147). Comparative fiber transcriptomes among wild strains, domesticated strains,
and their F1 hybrids uncovered genome-wide and novel cis- and trans-regulatory patterns (3). A
total of 1,655 fiber-expressed genes with cis- and trans-regulatory variations were found to form
through divergence and domestication. Of these, 513 genes exhibited cis-only divergence, 301
genes exhibited trans-only divergence, and the remaining 841 genes exhibited both cis- and trans-
divergence. At-biased expression is more often associated with trans-only regulatory mechanisms,
whereasDt-biased expression is more closely related to cis-only regulatory changes (3). In addition,
up to 80% of the long noncoding RNAs (lncRNAs) were reported to exhibit allelic expression in
the allotetraploid cotton, leading to the hypothesis that hybridization and polyploidization enabled
the neofunctionalization of lncRNA transcription (149).

3.3. Cotton Domestication

Cotton was one of the earliest domesticated economical crops, and it has experienced at least four
parallel domestications that resulted in the production of diploid and allotetraploid cotton species
(30, 78). Perhaps the most obvious phenotypic change in domesticated cotton is its significantly
elongated and much-strengthened fiber cells (Figure 3b). G. hirsutum was initially domesticated
from a wild race named yucatanense in the Yucatan peninsula. In addition to yucatanense, there are
six other recognized races (punctatum, palmeri, latifolium,marie-galante,morrilli, and richmondi) in
the same group that may be considered as semiwild forms of cotton (17). Studies of a variationmap
from 352 wild and domesticated Upland cotton accessions revealed a total of 93 domestication
sweeps that occupied 178 Mb of the genome (74 Mb in the At-subgenome, 104 Mb in the Dt-
subgenome). Also, 1,228 genetic loci from the Dt-subgenome and 549 from the At-subgenome
were found under strong selective pressure (113). Another experiment showed that 4,754
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Introgression:
the introduction of
genetic materials from
one species into
another species

genetically selected loci associated with fiber-related traits were located in the Dt-subgenome,
while only 2,587 were found in the At-subgenome (62), suggesting that the coexisting subgenomes
of G. hirsutum may have undergone asymmetric domestication selections.

A survey of genetic diversity for G. barbadense germplasms indicated that its early domestica-
tion might have taken place in coastal regions of northwestern Peru and southwestern Ecuador
around Guayaquil Gulf. Thus, northwestern Peruvian and southwestern Ecuadorian accessions
have a high diversity of primitive types and are basal to other G. barbadense accessions (122). A
number of interspecific reciprocal introgression events have been found between G. hirsutum and
G. barbadense, and the introgression pattern is significantly biased toward the gene flow from G.
hirsutum into G. barbadense (16). Comprehensive epigenomic analysis of wild and domesticated
cottons identified 519 differentially methylated genes, some of which, such as flowering time and
seed dormancy, contribute significantly to domestication traits (86). These identified genetic loci
reveal the molecular basis underlying phenotypic changes and provide targets for cotton breeding.

Both diploid cottons G. herbaceum and G. arboreum have short, coarse, and weak fibers with
very low commercial value today, although they were historically domesticated for human cloth-
ing. Morphological evidence and genomic data support the assumption that the wild progenitor
of G. herbaceum was descended from the southern African subspecies africanum (35) (Figure 3b).
Although the ancestor of G. arboreum is not clearly known yet, we have reasons to suggest
that it might have been domesticated first in either Madagascar or the Indus Valley before be-
ing dispersed to China from India and/or Pakistan and subsequently to other areas (35, 120).
The first variation map of diploid cultivated cotton was constructed by the resequencing of 230
G. arboreum and 13 G. herbaceum accessions mostly collected from China (14). Phylogenetic anal-
ysis based on SNPs is consistent with the hypothesis that the Chinese G. arboreum geographical
race originated in South China and was subsequently introduced into the Yangtze River and Yel-
low River regions (14). Pairwise comparison among accessions from the South China, Yangtze
River and Yellow River regions identified a number of genetically divergent regions that overlap
with identified quantitative trait loci encoding traits related to maturity, yields, boll weight, and
disease resistance, which indicated that Chinese G. arboreum accessions have been under strong
human and/or geographical selections (14). These identified domesticated loci represent an im-
portant high-resolution genetic resource that will facilitate the improvement of complex cotton
traits and enable important characteristics of diploid cottons to be transferred into the tetraploids
through interspecific hybridization.

4. REGULATION OF COTTON FIBER DEVELOPMENT

4.1. Modes of Fiber Cell Initiation and Elongation

Cotton fibers grow in a highly polarized manner governed by the actin cytoskeleton and mi-
crotubule organization. Quite a number of cytoskeleton-related genes, such as the actin-related
GhACT_LI1 (96), GhACTIN1 (53), GhADF1 (107), GhFIM2 (143), and GhPFN2 (108); the
tubulin-related GhTUA9 (51); and the kinesin-encoding GhKCH1 (71), are critical for fiber elon-
gation and cell wall formation in cotton. RNA interference (RNAi) of GhACTIN1 expression dis-
rupts the actin cytoskeleton network with significantly reduced fiber elongation growth without
affecting fiber initiation (53). Downregulation of the gene encoding an actin depolymerizing fac-
tor, GhADF1, increases both fiber length and strength (107). Overexpression of GhFIM2, which
encodes an actin-bundling protein, accelerates fiber growth with increased actin bundle formation
(143). Conversely, overexpression of a gene that encodes fiber-preferential actin-binding protein,
GhPFN2, results in the termination of cell elongation and a short-fiber phenotype, possibly caused
by the formation of thicker and more abundant F-actin bundles during the early elongation stages
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Linear cell-growth
mode: in this mode,
microtubules are
oriented transversely
with diffuse growth in
the shank of the fiber
cell while the cell’s
apex has characteristics
of tip growth

(108). Thus, the actin cytoskeleton and actin depolymerization may play an important role during
the fast and robust fiber elongation growth period.

The mode of cotton fiber cell elongation has been a topic of heated discussions among scien-
tists working in this field in the past several decades. Fiber cells were once regarded as tip-growing
cells that depended exclusively on apical cell wall synthesis (89) or a diffuse growth mode due to
the presence of transversely arranged microtubules perpendicular to the growth axis of an elon-
gating fiber cell (71, 100). A linear cell-growth mode was proposed based on the finding that a
large number of genes involved in vesicle coating and trafficking were preferentially expressed at
various stages of fiber growth (76).Live-cell imaging of elongating fiber cytoskeletons showed that
these cells may elongate via a unique tip-biased diffuse growth mode (139). Observations of actin
networks in cotton fibers, as imaged by the F-actin reporter ABD2-GFP, in multiple transgenic
cotton lines, discovered several common properties with Arabidopsis hypocotyls or root epidermal
cells that are known to elongate via a diffuse growth mode. Also, microtubules in the fiber shanks,
as monitored through an mCherry-tagged microtubule plus-end tracking protein EB1b cassette,
were also deposited transversely to the growth axis, with a clear microtubule-depleted zone in the
fiber apex. Four-dimensional images show endosomal vesicles, stained and visualized using the
FM4-64 lipophilic dye as a membrane marker, evenly distributed along the elongating fiber cells
and moving bidirectionally along the fiber shank to and from the fiber tip. Taken together, they
concluded that cotton fibers probably elongate via a tip-biased diffuse growth mode, similar to
the previously proposed linear cell-growth mode (139).

4.2. Fiber Cell Wall Structure: Hypotheses and Recent Evidence

Fiber cell wall formation occurs in three phases: (a) a cell elongation period at ∼5–25 DPA, char-
acterized solely by the synthesis of the primary cell wall (PCW), which may contain ∼23% cel-
lulose fibrils, ∼22% proteins, and various amounts of polysaccharides including xyloglucan and
pectins; (b) the transition stage; and (c) the SCW deposition period at ∼20–45 DPA (76, 85).
The extensibility of the PCW is mediated in part by xyloglucan hydrolases, as overexpression
of GhXTH1 in transgenic cotton results in 15–20% longer fibers when compared with those of
wild types (47). During the PCW synthesis stage, several cell wall−loosening proteins, such as
GhRDL1 and GhEXPA1, have been characterized to play key roles in cell wall reconstruction
(130).

The SCW in cotton fibers is composed of 95% cellulose with almost no lignin, which is a no-
table difference from other cell types in higher plants, and is synthesized and deposited inside the
PCW (76). Cellulose synthesis, which is catalyzed by the cellulose synthase complexes (CSCs), is
the predominant event during the SCWdeposition stage.The catalytic subunits of plant CSCs for
Arabidopsis PCW synthesis are encoded by at least three cellulose synthase (CesA) genes (CesA1,
CesA3, and CesA2 or CesA6) with three different CesA genes (CesA4, CesA7, and CesA8) being re-
sponsible for SCW synthesis (1). Analysis of the G. hirsutum genome revealed that there are 32
CesA genes in Upland cotton in contrast to 10 in Arabidopsis. Among them, CesA4, CesA7, and
CesA8 were predominately expressed in fiber cells during SCW biosynthesis at levels 1.5- to 40-
fold higher in cultivated species than in wild cottons, suggesting their potential role in enhancing
lint yield and quality (49, 147). Although CSCs are likely crucial for producing cellulose microfib-
rils, the number of CesA monomers in a given CSC and the organization of CesAs in the plant
kingdom, including cotton, have been debated for many years. The architecture of a poplar tree
PttCesA8 complex with homotrimers giving rise to 18 cellulose chains in the context of rosette-
like CSCs, stabilized by cytosolic conserved regions and transmembrane helical exchanges, has
recently been revealed by cryogenic electron microscopy (73). Researchers will need to further
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lintless-fuzzless (fl):
an Upland cotton
mutant obtained from
the variety Xuzhou
142 that possesses no
fibers

explore the precise architecture of CSCs to better understand the molecular mechanisms of cel-
lulose biosynthesis.

Other genes that encode proteins essential for cellulose biosynthesis have also been heavily
scrutinized. For example, sucrose synthase (SuSy) catalyzes a reversible reaction with a preference
to convert sucrose into fructose and uridine diphosphate (UDP)-glucose, both of which are sub-
strates for cellulose biosynthesis (79). Several SuSy genes, including GhSusA1 (44) and SusC (4),
are involved in SCW synthesis or fiber cell elongation. Sucrose efflux, which provides the major
osmotically active solute to generate the turgor pressure required to drive fiber cell elongation
(90), is regulated by GhSWEET12, which encodes a sucrose transporter. In plants, RNAi that re-
duces expression of GhSWEET12 or its main regulator, myeloblastosis viral oncogene homolog
(MYB) transcription factor (TF) GhMYB212, significantly decreases sucrose accumulation and
results in shorter fibers and a lower lint index.

4.3. Epigenetic Modifications and Small RNAs During Fiber Development

Using deep transcriptome sequencing, scientists characterized 35,802 lncRNAs and 2,262 circular
RNAs, among which 645 lncRNAs were preferentially expressed in the lintless-fuzzless (f l) mutant
and 651 in fiber-attached lines (32). Virus-induced gene silencing experiments showed that silenc-
ing lncRNA XLOC_545639 and XLOC_039050 in the flmutant increased the number of sites of
fiber initiation on the ovules, whereas silencing XLOC_079089 in wild-type Xu142 resulted in a
short-fiber phenotype. Fiber cells contained higher rates of DNAmethylation,mediated predom-
inantly by an active H3K9me2-dependent pathway rather than the classical RNA-directed DNA
methylation pathway, when compared to ovule tissue (115). Reduced expression of GhHDA5, a
histone deacetylase that is preferentially expressed from −1 to 0 DPA, results in very few fiber
initials and a much lower lint yield. These RNAi cotton lines showed alterations in H2O2 homeo-
stasis and elevated autophagic cell death, suggesting that GhHDA5 may modulate the expression
of stress- and development-related genes involved in fiber growth and development (46).

A trans-acting small interfering RNA (tasiRNA) gene, TAS3, that represses the auxin response
factor ARF4 expression during the rapid fiber elongation stage is triggered by miR390, whereas
TAS4 is triggered by miR828 and miR858 to generate 21-nt tasiRNAs responsible for fiber initi-
ation (25). Suppressing microRNA (miRNA)156/157 function results in a significant reduction in
the mature fiber length, which further illustrates an essential role of these miRNAs in fiber elon-
gation (57). Applications of the CRISPR/Cas9 genome-editing system and similar techniques (9)
may help us understand the roles of small RNA and epigenetic regulation in cotton.

4.4. Transcription Factors in Fiber Cell Development

In Arabidopsis, the MYB-basic helix-loop-helix (bHLH)-WD40 (MBW) complex including
GLABROUS1 (GL1), GL3, ENHANCER OF GLABRA3 (EGLf3), and TRANSPARENT
TESTA GLABRA1 (TTG1) regulates expression of the homeodomain leucine zipper (HD-ZIP)
IV TF GL2, which promotes trichome growth, whereas TRIPTYCHON (TRY) and CAPRICE
(CPC) counteract the complex-formation process by competing with GL1 for GL3 and EGL3
binding (77, 119). Cotton fiber is a distinct type of trichome derived from seed epidermis that is
composed of unbranched and extensively elongated single cells. Over 400MYB genes, including
those encoding the GL1-type R2R3 MYBs (80), are expressed preferentially in at least one stage
of fiber development. As a homolog of Arabidopsis GL1, the R2R3 MYB TF GaMYB2, which is
specifically expressed in the early stages of fiber development, is able to rescue trichome formation
in theArabidopsis gl1mutant (117).When the homeodomain-containing protein (HOX)GaHOX1,
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a homolog of Arabidopsis GL2, was introduced into Arabidopsis thaliana plants under the control
of an authentic GL2 promoter, the trichome-deficient phenotype of gl2-2 was complemented
successfully (24). Other homologs of the Arabidopsis MBW components, including two WD40-
repeat proteins (TTG1 and TTG3), GL3 homologs (GhDEL65/61 and GhMYC1), CPC, and
TRY, were also functionally characterized in cotton (56, 83). Although these MYB genes may be
functionally equivalent to Arabidopsis GL1, silencing of GhMYB109 led to only a mild reduction
in fiber length (72). GhTTG2, a homolog of Arabidopsis AtTTG2, promotes proanthocyanidin
biosynthesis, which results in the production of a brown color in cotton fibers (132), suggesting
that the GL1-type MYBs have diverse roles in cotton fiber development.

Several lines of evidence suggest that MIXTA-like MYB TFs, such as the ovule-specific
GhMYB25 andGhMYB25-like genes, have been identified to act as the master regulators of cotton
fiber initiation. RNAi of theGhMYB25-like gene results in glabrous or fiberless cotton seeds, phe-
nocopying the fl mutant (103). Map-based cloning of the so-called naked (fuzzless) seed mutant
N1 indicated that the MYBMIXTA-like TF 3 (MML3)/GhMYB25-like gene (located on chromo-
some A12) is associated with fuzz development. Further studies showed that this locus contains
twoMML genes,MML3 andMML4, arranged tandemly to control fuzz initiation (104). Analysis
of cotton mutants with impaired fiber development fixed a fiber determinant locus to the homolo-
gous region on chromosome D12 (124), where the target gene GhMML4 (GhMML4_D12) func-
tions together with its partner, a divergedWD40 repeat protein (GhWDR), to regulate spinnable
lint production (99).

Thirteen HD-ZIP IV genes in G. arboreum and 26 in G. hirsutum were identified by a
genome-wide analysis (8), and three of these, which encode the TFs HOX1 to HOX3, were
isolated from both cotton species (24). Although HOX1 is most similar to Arabidopsis GL2 (66%
identical), experimental data from transgenic cotton plants indicated that GhHOX3 may act as a
core regulator of fiber elongation. Silencing of GhHOX3 expression in G. hirsutum by RNAi or
as a result of cosuppression drastically reduces fiber length, with fuzz-like short fibers produced
on the seeds (82). GhHOX3 interacts with GhHD1 as well as with the cotton DELLA protein
GhSLR1, which is a repressor of the phytohormone gibberellic acid (GA) that is well known for
promoting plant cell growth. The GhHOX3-GhHD1 complex exhibits higher transcriptional
activity towards GhRDL1 and GhEXPA1 than either alone, whereas GhSLR1 competitively binds
to GhHOX3 to impede the transcriptional activation required for transmitting the GA signal for
fiber cell elongation (Figure 4).

TCP proteins form another plant-specific TF family and contain a conserved noncanonical
bHLH domain for DNA binding. A class I TCP gene of G. barbadense, GbTCP, is preferentially
expressed in fiber cells and is proposed to regulate jasmonate ( JA) levels and, subsequently, the
level of reactive oxygen species, as well as calcium signaling (28). PRE1, an atypical bHLH fac-
tor, promoted hypocotyl cell elongation in Arabidopsis. In tetraploid cotton, GhPRE1A from its
At-subgenome is expressed specifically in fiber cells and is presumed to regulate fiber elongation,
whereas its Dt-subgenome homolog is inactivated by a TATA-box fragment deletion in its pro-
moter region (148).

The NAM, ATAF1 and ATAF2, and CUC2 (NAC)-type TFs in Arabidopsis act as the primary
regulators of SCW formation (94). OneG. hirsutumNAC gene,GhFSN1, is specifically expressed
in fiber cells during the SCW biosynthesis stage. Overexpression of GhFSN1 significantly in-
creases cell wall thickness at the expense of fiber lengths, with both GhMYBL1 and GhKNL1 TFs
known to control GhFSN1 expression directly (141). Recently, miR319-regulated CIN-type TCP
genes, such as GhTCP4, were shown to play a role in modulating cotton fiber cell elongation and
promoting SCW biosynthesis as well (6). GhTCP4 interacted antagonistically with GhHOX3
to constrain fiber elongation growth. At the early stages of cotton fiber development, miR319 is
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Figure 4

Regulatory networks for cotton fiber initiation and elongation. A total of six major pathways are presented on the schematic model,
including (●1 ) MYB-bHLH-WD40-GaHOX1, (●2 ) MIXTA-like MYB transcription factors (GhMML3 and GhMYB25), (●3 ) plant
hormones IAA, (●4 ) BR-mediated regulatory networks, (●5 ) the signaling between VLCFAs and ethylene production that is essential for
maintaining a linear cell-growth mode, and (●6 ) GA-GhHOX3. The items with colored ovals or rectangles show the protein-protein
interactions. Abbreviations: bHLH, basic helix-loop-helix; BR, brassinosteroid; CesA, cellulose synthase; GA, gibberellic acid; IAA,
indole-3-acetic acid; ROS, reactive oxygen species; VLCFA, very-long-chain fatty acid.

abundant, and its target TCPs are maintained at low levels, whereas GhHOX3 actively promotes
fiber cell elongation. When miR319 expression declines during later stages of fiber growth, the
levels of TCPs increase to promote cellulose biosynthesis and SCW formation.Overexpression of
an miR319-resistant form reduces fiber cell elongation and accelerates SCW deposition, result-
ing in short fibers with thicker cell walls (6). Thus, the dynamics of GhHOX3 expression and the
miR319-targeted TCP expression patterns modulate the cotton fiber transition from cell elonga-
tion to cell wall thickening (Figure 4). Additionally, two LIM-domain TFs, GhXLIM6 (54) and
WLIM1a (27), affect SCW biosynthesis, although their specific molecular mechanisms remain
largely elusive. Experimental analyses combined with newly acquired genomic data will further
our understanding of fiber cell development and cellulose biosynthesis for both fiber yield and
quality improvement.

4.5. Regulatory Networks That Govern Fiber Development

The plant hormones GA, indole-3-acetic acid (IAA), JA, ethylene, and brassinosteroids (BRs) are
known to play pivotal roles in fiber cell development (84, 119, 128). Exogenous application of GA
or elevation of its endogenous level by introducingGhGA20ox1, a GA biosynthesis gene, promotes
significant cotton fiber initiation and elongation (129).Manipulation of endogenous IAA levels by
overexpression of GhiaaM, a gene responsible for IAA biosynthesis, under an epidermal-specific
promoter, greatly enhances fiber initiation and yield (144). Addition of exogenous IAA stimulates
GhTCP14 expression predominantly during the fiber cell initiation and elongation stages (116).
GhTCP14 binds directly to the promoters of genes encoding the auxin uptake carrier (AUX1), the
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Very-long-chain fatty
acids (VLCFAs):
fatty acids with a chain
length of >18 carbons

Gossypol:
a polyphenol aldehyde,
isolated only from the
cotton plant, that
harbors a naphthalene
core with two
aldehydic groups and
six hydroxyl groups

auxin response protein (IAA3), and the auxin efflux carrier (PIN2). Thus, GhTCP14 may play a
role in IAA-mediated cotton fiber cell differentiation and elongation. By contrast, overexpression
of a JA signaling pathway repressor,GhJAZ2, which interacts with GhMYB25-like/GhMML3 and
GhGL1, results in fewer fuzz fibers and shorter lint fibers with smaller cotton seeds (31).

Ethylene biosynthesis is the most upregulated biochemical pathway during early cotton fiber
development, and the exogenous application of C2H4 in the semi–in vivo ovule culture system
promotes significant fiber, but not ovule, cell growth (84). Genes responsible for ethylene pro-
duction, mainly 1-aminocyclopropane-1-carboxylic acid oxidases 1 through 3 (ACO1–ACO3),
are expressed at significantly higher levels during this growth stage, and the amount of ethyl-
ene released from cultured ovules is correlated with ACO expression and with the rate of fiber
growth.Ethylenemay promote cotton fiber elongation by increasing the expression of SuSy, tubu-
lin, and expansin genes (84). Differences in ethylene production and its regulatory mechanisms in
three cotton species—G. raimondii with nonspinnable fibers, G. arboreum with shorter fibers, and
G. hirsutumwith long fibers—have been further elucidated from a genomic viewpoint by sequenc-
ing and assembling these cotton genomes (49, 50). Elongating fibers contain high levels of ACO
activities, likely promoted by elevated levels of saturated very-long-chain fatty acids (VLCFAs),
as external C24:0 added to the ovule culture medium results in significant fiber cell elongation,
preceded by a rapid and significant increase in ACO expression with a prompt and robust ethy-
lene production. This C24:0 effect is blocked in the presence of an ethylene biosynthesis inhibitor
(75). Overexpression of KCS6, a key gene in VLCFA biosynthesis in Upland cotton, increases the
final length of the fiber significantly (∼6.0–12%) (35), indicating that VLCFAs may act upstream
of the ethylene pathway (76, 127). Comparative proteomics between the fl mutant and wild type
revealed that most of the wild-type ovule preferential proteins were involved in the biosynthesis
of pectic precursors important for PCW during cotton fiber and Arabidopsis root hair elongation
(69). Collectively, these data support the notion that ethylene and C24:0 may promote cotton
fiber and Arabidopsis root hair growth by activating the pectic network, especially via enhanced
UDP-l-rhamnose and UDP-d-galacturonic acid biosynthesis.

BRs regulate cell elongation, as a BR-deficient cotton mutant, pag1, displays a dwarf plant
phenotype with reduced fiber length (112, 138). Elevation of BR levels by overexpressing the BR
biosynthetic gene steroid 5α-reductase, GhDET2 (60), or its regulator, the bHLH TF GhFP1
(59), substantially increases the final fiber lengths in transgenic plants. GhFP1 was confirmed to
bind with the E-box sequences located at the promoters of two genes related to BR synthesis,
GhDWF4 and GhCPD (59). Also, external BR application induces the expression of brassinazole-
resistant 1 (GhBZR1), whereas phosphorylation of BZR1 by GhBIN2 kinase facilitates its binding
to an acidic regulatory protein Gh14-3-3. Overexpression of Gh14-3-3 results in a significant
increase in mature fiber length, and lines in which its expression is suppressed show a retarded
fiber initiation process with significantly shorter final fibers (150). The molecular mechanisms
regarding fiber cell growth mediated by either BRs or 14-3-3 proteins need to be scrutinized
further.

5. SPECIALIZED METABOLITES AND STRESS RESPONSES

5.1. Genetic Control of Pigmented Gland and Nectary Formation

Bioactive and specialized metabolites are often stored in defined plant tissues or structures to
avoid self-toxicity. For example, the cotton gland forms a cavity surrounded by thick-walled cells
in which specialized metabolites accumulate and are stored. There are glandless cotton cultivars,
such as the recessivemutant (gl2gl3) ofG.hirsutum and the dominantmutant (Gl2e) ofG. barbadense,
which do not accumulate gossypol and related sesquiterpene aldehydes in aerial organs, including
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seed (66, 92). Genetic mapping of Gl2e by cross populations identified a pigment gland formation
gene (GoPGF) that encodes a bHLH TF. Repressing GoPGF expression by virus-induced gene si-
lencing leads to emerging leaves that are glandless or have very few glands (61). Sequence analysis
of recessive glandless G. hirsutum mutants showed that a single T or A is inserted into GhPGF,
located in the At-subgenome orDt-subgenome, respectively,which results in the premature termi-
nation of the corresponding protein, whereas the molecular mechanism that dominantly impairs
PGF function remains obscure (61). RNA-seq analysis of embryos of the near-isogenic glanded
versus glandless plants identified 33 genes expressed immediately prior to gland formation, among
which are three homologous genes, including the cotton gland formation 1 (bHLH TF CGF1),
NAC TF CGF2, and synonym of GoPGF (CGF3). Knockout of GhCGF3 resulted in a glandless
phenotype, which supports the hypothesis that bHLH TFs serve as master regulators of lysige-
nous gland formation (42). Phylogenetic analysis showed that PGF is closely related to bHLH14
and distantly related to three ArabidopsisMYCs (MYC2, MYC3, and MYC4) that have important
roles in JA signaling (74) (Supplemental Figure 1). Comparative transcriptomes of three gland-
less versus four glanded cultivars identified an MYB TF, CGP1, as a regulator of sesquiterpene
phytoalexin biosynthesis (20). CGP1 contributes significantly to gland pigmentation, probably by
interacting with GoPGF to form a heterodimer in the nucleus, which suggests the presence of
a molecular linkage between gland development and the biosynthesis of its metabolic contents.
Both the signal involved in gland formation and the mechanism underlying cell death in the gland
chamber require further investigations.

Another type of glandular structure in cotton, named extrafloral nectary, contains an array of
metabolites enriched in saccharides and amino acids that function in plant defense against her-
bivores (29). Quantitative trait locus analysis identified a Phox-Bem1 domain−containing gene,
GaNEC1, that participates in regulating nectary formation (33).Whether they use packed poisons
for deterring predators or sweet juice for engaging ants and other insects, glands of various types
are important in mediating plant interactions with other organisms, serving as a driving force for
coevolution and biodiversity.

5.2. The Gossypol Biosynthetic Pathway

Cotton plants produce a group of lineage-specific sesquiterpenoids, such as gossypol and
hemigossypolone, which have antifungal, antibacterial, or insecticidal activities toward diverse
herbivores, including the devastating lepidopterans cotton bollworm and beet armyworm (97,
126). Gossypol is the major, if not only, sesquiterpene phytoalexin present in cotton seeds, while
hemigossypolone predominates over gossypol in leaves.

Progress in cotton genomics has facilitated the elucidation of the gossypol biosynthetic path-
way from farnesyl diphosphate (FPP) to hemigossypol (98) (Figure 5). FPP is synthesized by FPP
synthase (FPS) from the cytoplasmic mevalonate and is then catalyzed by (+)-δ-cadinene synthase
(CDN) to produce the bicyclic (+)-δ-cadinene with high efficiency (>98%) in cotton (10, 41).
Silencing the CDN gene in cotton ultimately generated cotton lines with ultralow seed gossy-
pol content (91). Six enzymes, including four P450 monooxygenases (CYP706B1, CYP82D113,
CYP71BE79, and CYP736A196), one 2-oxoglutarate/Fe (II)-dependent dioxygenase, and one
short-chain alcohol dehydrogenase, have been identified as being responsible for the oxidative
modifications of the (+)-δ-cadinene skeleton (Figure 5).

Hemigossypol harbors a naphthalene core with two fused benzene rings. A specialized
Zn2+-dependent glyoxalase (GLX) variant, SPG, aromatizes both rings of the naphthalene core
efficiently without cofactors, completing the biosynthetic pathway for hemigossypol (37, 38)
(Figure 5). G. hirsutum has two GLXI genes, located on chromosome 13 of each subgenome,
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Double-stranded
RNA (dsRNA):
synthetic small hairpin
RNAs or short
interfering RNAs that
silence target gene
expression

Figure 5 (Figure appears on preceding page)

Gossypol pathway genes and their expression profiles, showing enzymes of the MVA and gossypol biosynthetic pathways and their
close homologs. Heat maps with the color scale representing log2-transformed FPKM (fragments per kilobase of gene per million
reads) values were created by computing the expression value for each gene (37, 147). The blue chemical structures in the left panel
indicate the chemical compounds involved in the MVA pathway. The newly formed groups catalyzed by the gossypol pathway enzymes
are shown in red. The dashed arrow indicates an unidentified reaction, and the numbers 0, 10, and 35 under each heat map indicate the
DPA of the ovule. Abbreviations: 2-ODD, 2-oxoglutarate/Fe (II)-dependent dioxygenase; AACT, acetoacetyl-CoA thiolase; CDN,
(+)-δ-cadinene synthase; DH, short-chain alcohol dehydrogenase; DPA, days postanthesis; FPP, farnesyl diphosphate; FPS, farnesyl
diphosphate synthase; HMGR, hydroxymethylglutaryl-CoA reductase; HMGS, hydroxymethylglutaryl-CoA synthase; IDI, isopentenyl
diphosphate isomerase; Lf, leaf; MVA, mevalonate; MVD, mevalonate 5-diphosphate decarboxylase; MVK, mevalonate kinase; Pi,
pistil; PMK, mevalonate 5-phosphate kinase; Pt, petal; Rt, root; Sm, stamen; SPG, specialized glyoxalase I; St, stem.

and six SPG genes (including a psuedogene), which form two homoeologous pairs in a cluster
on chromosome 3. Compared with parental GLXs, SPG has lost the signal peptide for exclusive
cytoplasmic localization and the GSH-binding domain to shift the pocket to accommodate cyclic
substrates. While the aromatization mechanism seems distinct, the specialization process of SPG
represents a textbook example of enzyme evolution: Upon gene duplication and subsequent local
duplications, the newly derived copies undergo functional innovations, starting from the catalytic
promiscuity of the parental enzyme, along with the removal of unnecessary domains (37).

Oxidative dimerization of hemigossypol into gossypol likely occurs in apoplastic space and re-
quires peroxidase or laccase activities (15). Transgenic Arabidopsis plants expressing GaLAC1, a
root-specific secretory laccase gene from G. arboreum, produce significant laccase activity that is
able to transform polluting phenolic compounds in soil to non- or less-toxic forms for phytore-
mediation (106). Because of the restricted rotation of the internaphthyl bond, gossypol exists as a
racemicmixture in cotton; the ratio of the two atropisomers, (+)-gossypol and (−)-gossypol, varies
with plant organs and among different species and cultivars. For example, the ratio of (+)/(−)-
gossypol is ∼3:2 in G. hirsutum cultivars grown in the U.S. but can be as high as 98:2 in the same
cultivars when grown in Brazil.Dirigent (DIR) proteins steer regio- and enantioselective coupling
of phenoxy radicals catalyzed by nonspecific enzymes. GbDIR2 from G. barbadense and GhDIR3
and GhDIR4 from G. hirsutum were cloned and are known to confer atroposelective synthesis of
(+)-gossypol (15).

5.3. Advances in Cotton Resistance to Biotic and Abiotic Stresses

A variety of insect herbivores, such as the Lepidopteran chewing caterpillar, the cotton bollworm,
and the Hemipteran sucking insect, the cotton aphid, are frequently found in cotton fields. Preda-
tion by cotton bollworm induces JA, ethylene, and GA pathway genes and downregulates the sali-
cylic acid (SA) pathway inG.hirsutum plants (39). JA is a regulator formediating insect defense, to-
gether withmiR156 and its target, SPL9 (65).The JA response is prompt in young plants but shows
progressive delays with an age-dependent tendency that has an inverse correlation with the levels
of SPL9 group proteins. Herbivorous insects have also evolved complex mechanisms, including
the release of effector molecules into the host and the production of diversified detoxification en-
zymes, to overcome host resistance. Since the cloning of the first effector glucose oxidase from
Helicoverpa zea (68), several effectors, such as HARP1 (7) and cytochrome P450 monooxygenases
(81, 93), have been identified. Not only phytochemicals but also phytohormones ( JA and SA) are
able to activate insect P450 genes during insect invasion (52, 93). Both structural changes in P450
proteins and upregulations of P450 gene expression have been associated with insect tolerance to
gossypol and insecticides (deltamethrin and fenvalerate) (45, 93). When a double-stranded RNA
(dsRNA) construct targeting the gossypol-inducible P450 gene CYP6AE14 (i.e., dsCYP6AE14)
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was introduced into Arabidopsis plants, CYP6AE14 expression was reduced significantly with a
concomitant reduction in larval weight gain (64). Similarly, using Helicoverpa armigera−targeting
dsNDUFV2 (encoding a mitochondrial complex I subunit), dsJHAMT ( juvenile hormone acid
methyltransferase), dsJHBP ( JH-binding protein), and dsFAR (fatty acyl-CoA reductase), which
targetsMiridae sap-sucking Adelphocoris suturalis, to transform cotton plants produced positive re-
sults for pest control (Supplemental Figure 2). These data suggest that RNAi-triggered signals
are successfully delivered into target organisms during pest ingestion or pathogen infection and
produce sequence-specific and selective effects for biological invasion control.

Cotton yield losses are caused mainly by the fungal pathogen Verticillium dahliae and cotton
leaf curl virus disease (CLCuD). Phytohormones SA, JA, and ethylene (126, 133) and nucleotide-
binding site (NBS)-leucine-rich repeat (LRR) protein genes (135) are involved in the plant defense
responses against V. dahliae, which secretes a deacetylase that modifies chitin oligomers to avoid
lysin motif (LysM) recognition and prevent pattern-triggered host immunity (19). Plant cells,
however, produce chitinase to disrupt the fungal cell wall, whereas V. dahliae releases VdSSEP1, a
secretory serine protease with hydrolytic activity toward class IV (such as Chi28) cotton chiti-
nase, to protect its cell wall chitin from being digested. The cotton apoplastic protein CRR1
binds to and protects Chi28 from being attacked by VdSSEP1 to maintain the plant defenses
(26).

The Ca2+-dependent cysteine protease (Clp-1) and isotrichodermin C-15 hydroxylase of
V. dahliae determine the virulence of this fungus. Cotton plants export endogenous miRNAs, in-
cluding miR166 and miR159, via plant vascular systems into V. dahliae hyphae that proliferate
extensively in vascular tissues, and these miRNAs recognize fungal Clp-1 and HiC-15 transcripts
and trigger an RNAi-like process (146). Transgenic cotton plants expressing an RNAi construct
against another V. dahliae virulence gene, hygrophobins1, show enhanced resistance to the fungus
(145) (Supplemental Figure 2). An miRNA-like small RNA from V. dahliae was found to epi-
genetically repress a fungal virulence gene via chromatin remodeling during pathogenicity (118),
which may help develop novel cross-kingdom RNAi strategies for plant protection (87, 131).

CLCuD, which is caused by whitefly-transmitted monopartite begomoviruses in association
with the modulation of satellites, is widespread and has been a serious problem since the 1980s
(63). The sole satellite-encoded protein βC1 was shown to inhibit the host plant ubiquitination
process through an interaction with the SKP1/CUL1/F-box complex to impair plant hormone
signaling, leading to viral accumulation and symptom aggregation in host plants (43). βC1 also dis-
turbs the plant autophagy pathway via interfering with the cytosolic glyceraldehyde-3-phosphate
dehydrogenase and autophagy-related protein 3 in host cells (40). As only G. arboretum, among
all cultivated cotton species, is immune to current CLCuD viruses, elucidation of the responsible
genetic and molecular mechanisms will likely help introduce CLCuD-resistant traits into widely
grown allotetraploid cotton cultivars.

Among major commodity crops, the highest portion of cotton (∼57%) is grown in water-
deficient areas. Overexpression of abscisic acid (ABA) biosynthesis genes, including ABI3 and
AtABI5, in cotton plants elevates endogenous ABA levels, which results in enhanced drought tol-
erance with higher water use efficiency (67). A WRKY TF gene, GhWRKY59, confers drought
tolerance in cotton plants (48), whereas a genome-wide association study indicates that the
sodium/calcium exchanger GaCATX8 is likely responsible for drought tolerance in G. arboreum
populations (14). Several other genes, including the bZIP TF GhABF2 (55) and aldehyde dehy-
drogenase ALDH21 from Syntrichia caninervis (134), were also determined in transgenic cotton
plants to confer drought stress resistance. This progress inspires further research with regard to
adaptation traits obtained from different cotton cultivars or species, which will help cotton field
management in arid and semiarid regions.
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6. FINAL REMARKS: OPPORTUNITIES, EXCITEMENT,
AND FUTURE GOALS

As more high-quality genome sequences are completed for cotton species and cultivars, especially
the remaining diploid wild cotton and related plant genomes, along with efficient gene manipula-
tion techniques and the use of other omics datasets, complex regulatory networks and metabolic
pathways will be deciphered to provide cotton breeders with functionally new genes and mod-
ules for crop improvement. Comparative genomic analysis may help to accurately determine the
divergence time among Gossypium species, the closest relative of G. raimondii, and the time of
whole-genome duplications in this tribe.Whether all cultivated and wild tetraploid cotton species
originated from the hybridization of the A0-genome with a G. raimondii−like genome and then
diversified into the present-day allotetraploid cotton species remains to be determined through
further in-depth genomic analyses.

Two unique regulatory mechanisms—networks centered on MML-type TFs (104, 124) and
a positive regulation by VLCFA-mediated ethylene biosynthesis (75, 84)—are in operation dur-
ing cotton fiber development. How these MML and HD-ZIP IV TFs function in cotton fibers,
what their major downstream targets are, what crosstalk or coupling mechanisms exist between
ethylene and VLCFAs as well as the orchestration with other plant hormones such as BR and GA
are questions that all await answers. Cell wall biosynthesis via the CesA genes plays an important
role in fiber growth, yet direct evidence with regard to specific CesA functions and structures and
the organization of various CesA complexes, in addition to the similarities and differences be-
tween the fiber cell wall and other cell wall types, is lacking. Genetic mutations of individual CesA
genes in cotton and high-resolution protein structures of the CesA complex will likely resolve
these challenging questions.

SUMMARY POINTS

1. Polyploidization, whole-genome duplication events, and high numbers of transposable
element bursts forged the complexity and uniqueness of the cotton genomes.

2. A now-extinct A0-genome may serve as the common ancestor for all existing diploid
A-genomes as well as those present in allotetraploid cotton species.

3. Cotton fiber may elongate via the linear cell-growth mode that relies on a positive regu-
lation of very-long-chain-fatty-acid-mediated ethylene biosynthesis, and the regulatory
divergence of key enzymes in this pathway resulted in different fiber phenotypes among
various cotton species.

4. Engineered production of RNA interference–inducing double-stranded RNA in cotton
plants triggered specific fungal or pest gene silencing that conferred strong pathogen
resistance.
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