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Cultivated cotton is one of the most economically important 
crop plants in the world. The allotetraploid Upland cotton, 
G. hirsutum (n = 2x = 26, (AD)1), currently dominates the 

world’s cotton commerce1,2. Hybridization between the Old World 
A-genome progenitor and a New World D-genome ancestor, fol-
lowed by chromosome doubling, formed the allopolyploid cotton 
~1−2 million years ago (Ma)3,4. Uncertainty regarding the actual 
A-genome donor of the widely cultivated allotetraploid cotton  
G. hirsutum has persisted5–13. A1 (n = x = 13) and A2 (n = x = 13), 
commonly known as African and Asiatic cotton, respectively, are the 
only two extant diploid A-genome species in the world14. Stephens 
first proposed in Nature, using genetic and morphological evidence, 
that A2 was the A-genome donor of present-day allopolyploid 
cottons6. Gerstel argued via cytogenetic studies that A1 was more 
closely related to the A-genome in the allopolyploids than A2 (ref. 8).  
Despite recent efforts to sequence the cotton genomes, including 
Gossypium raimondii (D5)15,16, A2 (refs. 17,18), (AD)1 (refs. 10,19–21) and  
Gossypium barbadense10,21 ((AD)2, a much less cultivated tetraploid  
cotton), the origin history of the A-genome donor for the tetraploid  
(AD)1-genome5,11,13 and the extent of divergence between the 
A-genomes remain elusive22,23. Abundant studies support a Gossypium 
species resembling D5 as the D-genome donor13, but currently there 
is no solid evidence to suggest that the actual A-genome donor of 
tetraploid cottons is either A2 (refs. 6,7,10,19) or A1 (refs. 8,9,11–13) as has 
been suggested.

In this study, we assembled A1 variety africanum for the first 
time and re-assembled high-quality A2 cultivar Shixiya1 and (AD)1 
genetic standard Texas Marker-1 (TM-1) genomes on the basis of 

PacBio long reads, paired-end sequencing and high-throughput 
chromosome conformation capture (Hi-C) technologies. Upon 
assembling and updating cotton genomes, we revealed the origin of 
cotton A-genomes, the occurrence of several transposable element 
(TE) bursts and the genetic divergence of diploid A-genomes world-
wide. Also, we identified abundant structural variations (SVs) that 
have affected the expression of neighboring genes and help explain 
phenotypic differences among the cotton species.

Results
Sequencing and assembly of three high-quality cotton genomes. 
Here we sequenced the A1-genome var. africanum for the first 
time by generating ~225-gigabase (Gb) PacBio single-molecule 
real-time (SMRT) long reads (the N50 (minimum length to cover 
50% of the total length) of these reads was 13 kilobases (kb)) with  
138-fold genome coverage. We generated an assembly that captured 
1,556 megabases (Mb) of genome sequences, consisting of 1,781 con-
tigs with the N50 of these contigs reaching up to 1,915 kb (Table 1).  
The initial assemblies were then corrected by using highly accurate 
Illumina paired-end reads (Supplementary Table 1). Finally, 95.69% 
of total contigs spanning 1,489 Mb were categorized and ordered 
into 13 chromosome-scale scaffolds using Hi-C data (Table 1 and 
Supplementary Table 1).

Also, the A2-genome cultivar Shixiya1 and the (AD)1-genome 
accession TM-1 were further sequenced using high-depth SMRT 
long reads resulting in 177-fold A2-genome coverage (~310 Gb) 
and 81.6-fold (AD)1-genome coverage (~205 Gb), respectively 
(Supplementary Table 1). The total assembled genome size for A2 
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was 1,637 Mb with 92.18% (1,509 Mb) of all sequences oriented and 
organized into 13 chromosomes. The resulting assembled genome 
size for (AD)1 was 2,290 Mb with 99.17% of all sequences anchored 
on 26 chromosomes (At1, 1,449 Mb; Dt1, 822 Mb). Compared with 
a recent PacBio-based A2 assembly18 (8,223 contigs with an N50 
of 1,100 kb), our assembly consists of 2,432 contigs with N50 of 
1,832 kb, resulting in a reduced number of gaps from 3,707 to 1,163 
(Table 1 and Fig. 1a). The N50 of our updated (AD)1-genome is 
5,020 kb (1,892 kb reported in ref. 21), with significantly fewer gaps 
compared with the most recently published genome (893 gaps 
versus 2,564 gaps reported in ref. 21), which represents ~2.65-fold 
improvement (Table 1 and Fig. 1b). Our assembled cotton genomes 
showed high congruence because the strongest signals from the 
Hi-C data clustered at the expected diagonal (Extended Data Fig. 1). 
Collinear relationships existed in quantity among cotton genomes, 
indicating that our pseudo-chromosomes derived from anchored 
and oriented contigs are of high quality (Extended Data Fig. 2). Our 
(AD)1-genome assembly also shared a high consistency for each 
chromosome with the previously published genetic map24 (Pearson 
correlation coefficients > 0.98) (Extended Data Figs. 3 and 4). These 
updated A2- and (AD)1-genomes may supplant earlier assemblies as 
chromosome-scale references.

The A1-, A2- and (AD)1-genomes comprise 43,952, 43,278 and 
74,350 annotated protein-coding genes (Supplementary Table 2), 
respectively, mainly in both ends of the chromosomes because 
as much as 79.71% of A1, 80.06% of A2 and 64.09% of the (AD)1-
genome are composed of TEs (Supplementary Table 3 and Fig. 1c). 
Also, TE-rich regions in the middle region of chromosomes remain 
silent, with low transcript levels, in contrast to gene-rich regions at 
both ends of chromosomes with high transcript levels (Fig. 1c).

Chromosomal translocation and inversions within Gossypium 
lineage. Compared with that of A1, the genome of A2 underwent 
a reciprocal translocation between chromosomes 1 and 2 (Fig. 1d), 
which is supported by previous cytogenetic data8. This translocation 
likely occurred after the two species separated and then became fixed 
in A2. The A1- and A2-genomes differed from the At1-subgenome by 
two and three translocations, respectively, of which the two recip-
rocal translocations between chromosomes 2 and 3, and 4 and 5, 
specifically occurred in the tetraploid At1-subgenome (Fig. 1d), 
suggesting that these translocations probably occurred after poly-
ploidization. The two translocations that specially occurred in At1 

were also confirmed by multivalent formations in hybrids between 
the allotetraploids and A1 or A2 (ref. 25). Two large-scale inversion 
events were detected between A1- and A2-genomes in chromosomes 
10 and 12 that were confirmed by Hi-C data and also by PCR ampli-
fications (Extended Data Fig. 5). The collinear relationship analysis 
of these cotton genomes indicated that the inversion in chromosome 
12 specifically occurred in A1 with the syntenic blocks inverted at 
the diagonal between ~15.96 Mb and ~77.61 Mb; the inversion in 
chromosome 10 may have occurred either in A1 at the diagonal 
between ~18.4 Mb and ~61.3 Mb or in At1 between ~23.09 Mb and 
~97.42 Mb (Fig. 1e). Thus, the two inversions likely occurred after 
the speciation of A1 and A2 cottons.

Origin of allotetraploid cotton. A molecular tree based on single-
copy genes suggests that the common ancestor of the A1 and A2 
clade was phylogenetically a sister to the At-subgenomes (At1 and 
At2) of (AD)1 and of (AD)2, respectively, and the divergence time 
for A1 and A2 was estimated to be ~0.7 Ma (0.4−1.4 Ma), well after 
the allotetraploid formation ~1.0−1.6 Ma (the values for the sepa-
ration of At to A1 or A2, and Dt to D5) (Fig. 2a). Gene trees with 
specific recombination regions also supported the sister relation-
ships between the A1–A2 clade and At1 (Extended Data Fig. 6a,b). 
Whole-genome phylogenetic analysis showed that the major topol-
ogy 1 (At1, 56.17%; At2, 59.75%) supported the constructed species 
tree in Fig. 2a. The minor topology 2 with the sister relationship 
of A1 and At (At1, 22.22%; At2, 22.11%) had a slightly higher rate 
than the other minor topology 3 with the sister relationship of 
A2 and At (At1, 21.61%; At2, 18.14%) (Fig. 2b and Extended Data  
Fig. 6c). Synonymous substitution (Ks) analysis indicated that A1 
and A2 had the lowest divergence (Ks values), compared with all 
other pairs (Fig. 2c). Likewise, a significantly greater number of 
identical sites were found between orthologs of A1 versus A2 relative 
to either A1 or A2 versus At1 or At2 (Fig. 2d). We further selected rep-
resentative cotton lines, including 30 (AD)1, 14 A1 and 21 A2 acces-
sions, to construct a phylogenetic tree based on whole-genome SNP 
studies to further validate the relationships of A1, A2 and At1 (Fig. 2e 
and Extended Data Fig. 7). Because the actual A-genome donor may 
be extinct, we compared At1, A1 and A2 accessions with the D5, an 
outgroup for all A-genome species. The distance from D5 to At1 was 
much smaller than that from D5 to its previously thought common 
ancestor, A1 or A2. About 30.54% of the SNPs of At1 were identical to 
the corresponding sites in the D5-genome, whereas only 20.52% and 
20.04% of ancestral alleles of A1 and A2, respectively, were identical 
to the corresponding sites in D5-genome (Fig. 2e). The nucleotide 
variation analysis indicated that A1 has relatively fewer nucleotide 
variations than A2 compared with At1 across the 13 chromosomes 
(Fig. 2f). Based on these evidence, we constructed a revised model 
in which neither A1 nor A2 is the actual A-genome donor. Instead, 
hybridization between the common ancestor (A0) of all A-genomes 
(A1, A2 and At) and a D5-genome resembling G. raimondii formed 
the allotetraploid cotton (Fig. 2g). Our results also indicated that 
the A0, inferred as the possible At donor, was more phylogeneti-
cally related to A1 than A2. The AD ((AD)1 and (AD)2) tetraploidi-
zation occurred approximately 1.0−1.6 Ma; A0 then developed 
into two A-genomes around 0.7 Ma (Fig. 2h). The finding that A0 
is a common ancestor for A1, A2, the At1-subgenome in (AD)1 and 
the At2-subgenome in (AD)2 resolves a puzzle regarding previous 
inconsistent phylogenetic data6–9,11–13 and explains why interspecific 
hybridization of A1 or A2 with D5 is often unsuccessful, because the 
genetic distances between the current A- and D-genomes are great 
enough to preclude fertilization.

Population genomic study of two A-genome species. We collected 
14 A1 and 67 A2 representative cotton accessions from India, Pakistan, 
China and other countries to study the genetic divergence between A1 
and A2 (Fig. 3a and Supplementary Table 4). All resequencing reads 

Table 1 | Assembly and annotation of A1-, A2- and (AD)1-
genomes in the current and two previous studies

category A1-
genomea

A2-genome (AD)1-genome

Ref. 18 current Ref. 21 current

Total PacBio 
reads (Gb)

225 – 310 – 205

No. of total 
contigs

1,781 8,223 2,432 4,791 1,235

N50 of 
contigs (kb)

1,915 1,100 1,832 1,892 5,020

Anchored 
contigs (Mb)

1,489 1,573 1,509 2,233 2,271

No. of total 
scaffolds

732 4,516 1,269 2,190 342

Total 
assembled size 
(Mb)

1,556 1,710 1,637 2,347b 2,290

aA1-genome is assembled for the first time in this work. bThis genome contains 65.29 Mb 
ambiguous ‘N’ (unknown nucleotide) bases.
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in root and leaf tissue, respectively. Transcript levels were estimated based on the average depth of mapped RNA reads in nonoverlapping 1-Mb windows. IX, 
GC content. d, Characterization of genomic variations in Gossypium. Genic synteny blocks are connected by gray lines. Reciprocal translocations and two large 
inversions are highlighted by dark gray and red links, respectively. e, Synteny maps using whole-genome alignments show that the inversion in chromosome 10 
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with an average coverage depth of ~7.2× for each accession were 
mapped to our assembled A2-genome for SNP identification. A total 
of 11,652,404 SNPs and 1,716,908 indels (ranging from 1 to 259 base 
pairs (bp) in length) were identified (Supplementary Table 5).  
Principal component analysis (PCA) based on SNPs showed that, 
despite their geographic origins, these cotton accessions were clus-
tered in two independent groups: the A1 group and A2 group (Fig. 3b).  
The neighbor-joining tree using SNPs indicated that A1 and A2 clus-
tered in two independent clades, and A2 from India and Pakistan 
and A2 from China have the closest relatives (Fig. 3c), which was 
confirmed by sliding window phylogenetic analysis with an aver-
age weighting of 55% in topology 1 (Fig. 3d). The topology 2 
is nearly identical to topology 3 throughout chromosomes, but 
there are several weak shifts in support toward topology 2 poten-
tially reflecting the introgression between A1 and A2 distributed in 
China (Fig. 3e and Extended Data Fig. 8). Model-based clustering 
showed that the population structures of A1 accessions were obvi-
ously significantly different from A2 accessions (number of clusters  
(K) = 2), and the population divergence between the A1 and A2 
from the India and Pakistan group or from China reached almost 
1.0, which suggested that these differences clearly distinguish A2 
from A1 as two cotton species, and may explain the phenomenon 
in which interspecific hybridizations of A2 with A1 are often unsuc-
cessful (Fig. 3c,f). Several A2 accessions from India and Pakistan 
were clustered sisterly to all A2 accessions collected from China, 
and the accessions from China had distinct population structures 
from accessions from India and Pakistan (K = 3). According to our 
results and the recorded history of Chinese Asian cotton26, we con-
cluded that A2 was likely introduced to China from India and/or 
Pakistan, then developed into a distinct geographical race (Fig. 3c).  
Two accessions of A1 var. africanum were gathered at the root of 
all other A1 accessions with no obvious impact on A2 development, 
which did not support the notion that africanum is the source of 
both cultivated A1- and A2-genomes14 (Fig. 3g). The large genetic 
differences revealed by population analysis and chromosomal  
SVs between A1 and A2 suggest that two A-genomes were evolved 
independently, with A1 var. africanum as the only living ancestor  
of A1 accessions.

Genome expansions and evolution. Among genome-sequenced 
plants of the order Malvales27–30, D5 and the Dt1-subgenome in 
(AD)1 are similar in genome sizes relative to Bombax ceiba or 
Durio zibethinus, but are expanded nearly twofold compared with 
the Theobroma cacao and Corchorus capsularis genomes (Fig. 4a). 
The two A-genomes and the At1-subgenome experienced a further 
twofold expansion that was highly correlated with TE bursts (cor-
relation coefficient, R2 = 0.978) (Fig. 4a). While both the D5-genome 
(738 Mb) and Dt1-subgenome (822 Mb) are nearly equivalent in 
size relative to the D. zibethinus genome (715 Mb), long terminal 
repeat (LTR) families in Gossypium (52.42% of the Dt1-subgenome, 
53.2% of the D5-genome) were greatly expanded in comparison to 
D. zibethinus (26.2%). As much as 72.57% of the A1-genome and 
73.62% of the A2-genome were composed of LTRs (Fig. 4b). LTR 
retrotransposons in Gossypium and B. ceiba have experienced con-
tinuing and more recent amplification bursts from 0−2 Ma, while 
D. zibethinus underwent a distinct amplification burst event around 
8−10 Ma (Fig. 4c). LTR retrotransposons in the A2-genome were 
further classified into 64 families, of which 68% belonged to the 
Gypsy superfamily and 12.6% to Copia (Fig. 4d). By using repre-
sentative LTR/Gypsy sequences (Supplementary Fig. 1) to evalu-
ate TE hits in cotton genomes, five distinct insertion peaks for 
the Gypsy-type LTR with identities from 65−76% to 96.4−99.4% 
were observed in different cotton genomes (Fig. 4e). We used our 
Gaussian probability density function (GPDF) analysis to estimate 
the burst time of major peaks, finding that the earliest insertion 
event occurred ~5.7 Ma, which is the expected speciation time for 

A- and D-genomes (Extended Data Fig. 9 and Fig. 4f). The peak 
with 85.5−88.5% identity, corresponding to ~2.0 Ma, is found spe-
cifically in Dt1- and At1-genomes, but not in D5, A1 or A2, suggesting 
that the allotetraploid cotton may have formed as early as ~2.0 Ma. 
The peak with 87−89.5% identity corresponded to 0.89 Ma and is 
common to both A1 and A2, indicating that speciation might occur 
at a later time. Indeed, the 93.0−93.8% identity (or 0.61 Ma) peak is 
unique to A1, and the last peak (with 96.4−99.4% identity; no valid 
calculation of ages because it is too close to date) is A2-specific. 
Our data showed that A1 and A2 speciation occurred 0.89−0.61 Ma. 
This was confirmed by results (Supplementary Fig. 2a–c, TDIV1 
(divergence time between A1 and A2) = 1,016,499 yr) obtained from  
fastsimocoal2 analysis, which used 30 accessions from (AD)1, 14 
from A1 and 21 from A2, as reported in Fig. 2e. However, G-PhoCS 
analysis, which used data from the fully assembled A1-, A2- and 
(AD)1-genomes (Supplementary Fig. 2d–f), did not quite fit our 
previous model. We suggest that G-PhoCS may not fit well for evo-
lutionary analysis of genomes with high TE contents, such as cotton.

SVs and fiber development. SVs including large deletions and 
insertions (>50 bp) are reported to drive important phenotypic 
variation within species31. Here we found that (AD)1 fiber cells 
underwent fast elongation reaching up to 30.5 ± 0.7 mm until 30 d 
post anthesis (DPA), whereas fiber cells in A1 (14.7 ± 0.7 mm) and 
A2 (16.1 ± 0.9 mm) elongated at a slower rate and terminated ear-
lier (~20 DPA) (Fig. 5a). By comparing two A-genomes with the 
A-subgenome of (AD)1, we identified 39,476 deletion and 21,577 
insertion events in A1, as well as 40,480 deletion and 20,903  
insertion events in A2. Meanwhile, we obtained 35,997 common 
SVs events including 21,431 deletions and 14,566 insertions in A1 
and A2, suggesting that these SVs occurred mainly at the com-
mon ancestor stage of two A-genome species (Fig. 5b). Of the total 
common SVs, 11,395 events (31.66%) were overlapped with genic 
regions affecting 9,839 unique genes, with 912 events occurring  
in coding DNA sequences (CDSs), 1,105 in introns and 9,378 in 
up-/downstream regions (Fig. 5c and Supplementary Table 6). Of 
the reported 1,753 associated loci for fiber traits2,32, 460 associated 
loci contained common SVs, with those in up-/downstream regions 
as the major type (Supplementary Table 7). We identified 1,545 
upregulated and 1,908 downregulated genes by comparing tran-
scriptomes of rapidly elongating fiber cells from the At1-subgenome 
with those of A2 (Supplementary Table 8). Also, 2,941 upregulated 
and 3,350 downregulated genes were identified with At1 and A1 
comparisons at elongating fibers (Supplementary Table 9). Of these 
differentially expressed genes, 949 for At1 versus A2 and 1,687 for At1 
versus A1 contained common SVs, respectively (Fig. 5d, Extended 
Data Fig. 10 and Supplementary Tables 10 and 11). Gene ontol-
ogy enrichment analysis indicated that fatty acid biosynthesis, cell 
wall deposition or biogenesis, and carbohydrate metabolism were 
the most enriched biological processes (Fig. 5e). Quantitative PCR  
with reverse transcription (RT–qPCR) analysis of several key genes 
related to fatty acid biosynthesis, including encoding 3-ketoacyl-
CoA synthase (KCS), fatty acid hydroxylase (WAX2) and lipid trans-
port proteins, validated the upregulation pattern in At1 compared  
with both A1 and A2 (Fig. 5f,g). Large sequence variations existed 
between At1 and A1 or At1 and A2 in the upstream or downstream 
regions of all of these genes (Supplementary Fig. 3). We introduced 
KCS6, a key gene in very-long-chain fatty acid biosynthesis33,34,  
in G. hirsutum cv. Zhong24 background and observed a signifi-
cant increase (~6.0–11.66%) of final fiber lengths in three homo-
zygous transgenic lines (L241-1, L241-2, L241-3) that were driven 
by 35S promoter and one line (L245-1) driven by the fiber-specific 
E6 promoter (Fig. 5h). Fifty-six transcription factors, including 
WRKY12, HD-Zip2 and MYB6, showed differential expression pat-
terns among the three cotton species that can be correlated with SVs 
(Fig. 5i and Supplementary Table 12). In combination with genome 
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scanning of transcription factor binding sites and A2–At1 differential  
expression, we identified 198 potential target genes for WRKY12 and 
232 for HD-Zip2 in the cotton genome (Supplementary Tables 13  

and 14). We suggest that higher expression intensities of these 
potential target genes in (AD)1 may lead to longer fibers in (AD)1 
than in either A1 or A2.
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Discussion
With high-quality assembly of two African–Asian species, A1 and 
A2, we provided a more complete landscape of genome architecture, 
gene annotations and TE insertions, which is critical to evolution-
ary and comparative genomics as well as genetic variation analysis. 
Our data suggested that At may have originated from a primitive 
A-genome common ancestor, referred to here as A0, instead of 
extant A1 or A2. Allotetraploid formation preceded the speciation 
of the present two A-genomes, and then A1 and A2 originated inde-
pendently with no ancestor–progeny relations. Upon publication of 
our new data, we anticipate that reviews and textbooks7,11,35 related 
to cotton genome evolution will have to be revisited and revised.

Several LTR bursts contributed compellingly to A-genome size 
expansion, speciation and evolution. By using fragmented coding 
sequences of LTRs, our GPDF analysis overcame a major pitfall 
related to most previous similar studies that relied on the presence 
of both ends of full-length LTRs10,17,36,37, such that more recently 
inserted LTRs are likely over-represented. We suggest that GPDF 
may be applied to analyze accurately the time of LTR bursts and 
genome evolution. Analysis of SV and gene expression patterns 
identified putative candidates to investigate the phenotypic dif-
ference among three cotton species. These candidate genes would 
enable cotton breeders to further improve major agronomical traits 
such as fiber quality and yield.
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Methods
Sampling and sequencing. Genomic DNA molecules of G. herbaceum (var. 
africanum Mutema, A1-0076), G. arboreum (cv. Shixiya1) and G. hirsutum (TM-1) 
were isolated from young leaves of individual plants. We obtained polymerase 
reads of ~225 Gb, ~177 Gb and ~205 Gb from SMRT cells on PacBio RSII and 
Sequel instruments for G. herbaceum (A1), G. arboreum (A2) and G. hirsutum 
(AD)1, respectively. Our previously released ~133-Gb PacBio reads from A2 were 
also integrated into our current A2-genome assembly. For A1-, A2- and (AD)1-
genomes, we also obtained ~52 Gb, 95 Gb and 70 Gb of raw reads, respectively, with 
400-bp inserts using a whole-genome shotgun approach on the Illumina HiSeq 
X-Ten platform. We sequenced ~256 Gb of clean Hi-C data for A1, ~219 Gb of  
clean Hi-C data for A2 and ~196 Gb of clean Hi-C data for (AD)1 on the Illumina 
HiSeq platform.

Assembly and correction. We performed de novo assembly of PacBio long reads 
into contigs with the program Falcon (v.0.4)38. To further improve the accuracy of 
reference assembled contigs, two-step polishing strategies were performed: we first 
used PacBio long reads and carried out an initial polishing with Polish software39 
and then used highly accurate Illumina paired-end reads to further correct the 
assembly with Pilon (v.1.20) software40. The PacBio contigs were further clustered 
and extended into pseudo-chromosomes using Hi-C data. Gaps that existed in  
the genomes were filled using Pbjelly41, followed by a second round of polishing 
using Quiver39.

Repeat analysis. Each of the whole genomes was searched for repetitive 
sequences including tandem repeats and TEs. Tandem repeats were annotated 
by TRF (v.4.07b)42 with the following parameters: 2, 7, 7, 80, 10, 50, 2,000. TE 
annotations were identified using a combination of de novo and homology-
based approaches. A de novo repeat library was constructed with RepeatModeler 
(v.1.0.8). We adapted RepeatMasker (v.4.0.6)43 to search for similar TEs against 
Repbase (Repbase21.08)44, mips-REdat library and the de novo repeat library. The 
RepeatProteinMask program was used to search against a TE protein database.

Analysis of potential LTR bursts using fragmented Gypsy-type transposons 
derived from full-length sequences. Intact LTR retrotransposons were detected 
using LTR_FINDER45 and classified into 64 families with 5′-LTR sequences 
based on the following parameters: similarity ≥ 80%, coverage ≥ 80% and copy 
number ≥ 100. A total of 13,332 LTR retrotransposons were translated in six frames 
that produced 1,397 Gypsy sequences with amino acids > 1,000.

GPDF fitting of LTR identity distributions and LTR burst time calculations. 
Full-length and truncated LTRs were identified across genomes with various 
lengths and identities, and then each sequence (length = l) was divided into 
30-bp units to determine the number of dots (n = l/30) with the same identity. 
Each Gypsy superfamily sequence was normalized to dot arrays with various 
identities, and all dot arrays were used to generate a box-plot according to their 
identities. For GPDF fitting and burst time calculation, single peaks in the TEs 
identity distribution curves were separated and fitted by GPDF with high adjusted 
R2 values, and the average nucleotide substitution ratio (K) was defined as 2.58 
standard deviations (σ). Then the TE burst time point for individual amplification 
peaks was estimated by t = K/r, in which r is the nucleotide substitution rate for 
cotton species (r = 7 × 10−9)17.

Gene prediction and annotation. Homology-based prediction, RNA-sequencing-
assisted prediction and ab initio prediction were used for gene model prediction. 
For homology-based prediction, GeMoMa software46 was applied based on 
homologous proteins from sequenced species, which included Arabidopsis thaliana 
(TAIR10, http://www.arabidopsis.org/), Oryza sativa (v7.0), G. arboreum, G. 
hirsutum, G. raimondii (D5), Populus trichocarpa (v.3.1), T. cacao (http://cocoa-
genome-hub.southgreen.fr) and Vitis vinifera (Genoscope 12×). RNA sequencing 
transcripts assembled with HISAT47 and StringTie48 were used to assist in gene 
structure predictions (Supplementary Table 15). In summary, a total of 52,444 
(mean size: 2,177.9 bp), 56,130 (mean size: 2,414.7 bp) and 111,872 (mean size: 
1,892.1 bp) assembled transcripts were obtained for A1, A2 and (AD)1, respectively. 
For ab initio gene prediction, we applied SNAP (V2006-07-28)49, Augustus 
(v.3.2.2)50, Genscan51 and GlimmerHMM (v.3.0.4)52 to generate gene structures. 
Finally, all predictions were integrated to produce a consensus gene set using 
EVidenceModeler (v.1.1.1)53. Gene functional annotations were assigned by 
aligning protein sequences to Swiss-Prot and TrEMB54 using BLASTP (E value 
(expected value) ≤ 1 × 10−5), KAAS55 (v.2.1) and InterProScan56 (v.5.24). Gene 
Ontology57 IDs for each gene were extracted from the InterPro entry.

Phylogenetic analysis. We used BLASTP to generate protein sequence pairs  
(E value ≤ 1 × 10−5) and then OrthoMCL (v.2.0.9)58 to cluster gene families with 
an inflation value of 1.5. The single-copy gene families were extracted and aligned 
using MAFFT (v.7.058)59. A phylogenetic tree was constructed using a maximum 
likelihood method implemented in RAxML (v.8.0.19)60 with a GTRGAMMA 
substitution model with O. sativa as the outgroup. The Markov chain Monte 
Carlo algorithm for Bayes estimation was adopted to calculate the divergence 

time using PAML (v.4.6)61. For the identification of SNPs on orthologous genes 
among A1, A2, At1 in (AD)1 and At2 in (AD)2 (ref. 21), we used BLASTP to do 
pairwise alignments and retained only homologous gene pairs with reciprocal best 
hits (E value ≤ 1 × 10−5). Then we generated multiple alignments of homologous 
proteins and back-translated to the CDS. A SNP was determined to be present 
if a position in the alignment included two or more different bases. If a SNP was 
identified in the aligned CDS but no resulting amino acid variation occurred in 
the corresponding position of alignment, this site was defined as an identical site 
within the ortholog. To further understand phylogenetic relationships among 
A1, A2 and At1, we focused on specific recombination regions to infer gene trees 
according to a previous report62. We applied reported methods63 to further perform 
phylogenetic analysis among A1, A2 and At1 or At2. In brief, genome alignments 
were divided into 10-kb segments and we performed an approximately unbiased 
test. The site likelihoods for each possible topology were calculated by RAXML, 
then these likelihoods were input into Consel64.

SNP identification. The sequenced reads of 14 A1 and 67 A2 cotton accessions 
were mapped to our assembled A2-genome in this study using BWA (0.7.10-
r789)65. PCR duplications in the alignments were removed in Picard (v.1.94). SNPs 
and indels identified by the HaplotypeCaller module were then used to perform 
base-quality recalibration with the BaseRecalibrator and IndelRealigner modules 
in the GATK toolkit (v.3.8)66. The genomic variants in GVCF (genomic variant 
call format) for each accession as identified by the HaplotypeCaller module 
and the GVCF files were merged. Raw SNP calls were further filtered using 
GATK filter expressions (‘QUAL<30.0||QD<2.0||FS>60.0||MQ<40.0||SOR>4.0’ 
--clusterWindowSize 5 --clusterSize 2).

Population genetics analysis. A subset of 9,555,165 SNPs (max-missing > 0.5, 
minor allele frequency > 0.05) in the 14 A1 and 67 A2 cotton accessions was 
screened to build a neighbor-joining tree in MEGA7 (ref. 67) with 1,000 bootstrap 
replicates using D5 as the outgroup. The cotton population structure analysis 
and a PCA were carried out using admixture68 with K values from 2 to 3 and 
EIGENSOFT software69, respectively. A pairwise fixation statistic (FST) analysis 
as calculated in the PopGenome package70 was used to estimate the degree of 
variability in three groups (A1 accessions worldwide, A2 accessions from the India 
and Pakistan group, and A2 accessions from the China group). To validate the 
relationships of the A1, A2 and At1, we used 30 released (AD)1 accessions32,71, 21 
released A2 accessions and 14 released A1 accessions to construct a population 
phylogenetic tree with D5 as the outgroup (Extended Data Fig. 7). The 
identification of ancestral alleles was as described18.

Phylogenetic weighting. For genome-wide evaluation of three possible 
phylogenetic hypotheses, a method called Twisst72,73 was applied to analyze A1 and 
A2 accessions. In brief, the phasing and imputation of filtered SNPs (minAlleles 2, 
depth (DP) ≥ 5, genotype quality (GQ) ≥ 30) obtained from the 14 A1 and 67 A2 
accessions and the outgroup D5 were performed using Beagle software with default 
parameters. Trees were constructed for each sliding window of 50 SNPs across 13 
chromosomes using Phyml software, then tree weightings were computed using 
Twisst, with four defined taxa: D5, A1 and A2 from China, and from India/Pakistan.

Demographic analysis. The G-PhoCS74 method was employed to infer the 
complete demographic history for A1, A2 and At1 based on 2,468 selected neutral 
loci. Coalescence simulations were run under two models, M1 (no gene flow) and 
M2 (ancient gene flow). To further convert estimates of divergence time (τ) and 
population size (θ) from mutations per site to years (T) and effective numbers of 
individuals (Ne), respectively, we assumed an A1A2–At1 average genomic divergence 
time of Tdiv ≈ 1.0 Ma (0.6–1.8 Ma), which was calculated by the molecular tree based 
on single-copy genes, and an annual production. We further applied fastsimcoal2 
software75 to infer demographic history based on fourfold degenerate sites selected 
from SNP datasets (minor allele frequencies > 0.05) from 30 released (AD)1 
accessions, 21 released A2 accessions and 14 released A1 accessions.

SVs among three cotton genomes. SVs were identified using NGMLR (v.0.2.4)76 
and PbSV (v.0.1.0). First, we mapped the PacBio subreads of A1 and A2 to the 
genome of (AD)1 using NGMLR with default parameters, and then PbSV was 
used to find large indels with length >50 bp using parameters: gapdistance = 1,000, 
min_readcount = 2, min_readfraction = 0.2, positionwiggle = 200, 
basepairidwiggle = 0.25, call_min_mapq = 10.

RT–qPCR analysis and plant transformation. Total RNA (~2 μg) was extracted 
and was then reverse transcribed in a 20-μl reaction mixture with TransScript 
cDNA Synthesis SuperMix (TransGen Biotech). Then 1-μl sample aliquots were 
used as templates for RT–qPCR analysis. UBQ7 was used as the internal control 
for RT–qPCR data analysis. The CDS sequences of the KCS6 gene were PCR 
amplified from the complementary DNA of 10-DPA fiber tissue and cloned into 
the pCAMBIA2300 vector, forming 35S::KCS6 or E6::KCS6 constructs. Then the 
construct was introduced into Agrobacterium tumefaciens strain LBA4404, and 
subsequently transferred into the Upland cotton G. hirsutum cv. Zhong24. All 
primers used in this study are presented in Supplementary Table 16.

NAtuRE GENEtics | www.nature.com/naturegenetics

http://www.arabidopsis.org/
http://cocoa-genome-hub.southgreen.fr
http://cocoa-genome-hub.southgreen.fr
http://www.nature.com/naturegenetics


ArticlesNature GeNetics

Statistical analyses. Student’s two-tailed t-tests were performed in GraphPad 
Prism software.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The genome sequence data for A1 and A2 are deposited in NCBI (PRJNA506494). 
The (AD)1-genome sequence data are accessible through NCBI (PRJNA524970). 
The assemblies and annotation files of A1, A2 and (AD)1 are available at the 
CottonGen website (https://www.cottongen.org/). The re-sequence data for A1 
and A2 accessions can be accessed with accession number PRJNA507537 in NCBI. 
Source data for Figs. 2 and 5 and Extended Data Fig. 5 are presented with the paper.
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